Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Appl Opt ; 61(11): 2967-2974, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471291

RESUMO

The SuperCam remote sensing instrument on NASA's Perseverance rover is capable of four spectroscopic techniques, remote micro-imaging, and audio recording. These analytical techniques provide details of the chemistry and mineralogy of the rocks and soils probed in the Jezero Crater on Mars. Here we present the methods used for optical calibration of the three spectrometers covering the 243-853 nm range used by three of the four spectroscopic techniques. We derive the instrument optical response, which characterizes the instrument sensitivity to incident radiation as a function of a wavelength. The instrument optical response function derived here is an essential step in the interpretation of the spectra returned by SuperCam as it converts the observed spectra, reported by the instrument as "digital counts" from an analog to digital converter, into physical values of spectral radiance.


Assuntos
Calibragem , Análise Espectral
2.
Space Sci Rev ; 217(1): 4, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380752

RESUMO

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm - 1 Raman shift relative to the 532 nm green laser beam) with 12 cm - 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.

3.
Appl Opt ; 54(24): 7377-86, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26368775

RESUMO

Issues related to moving elements in space and instruments working in broader wavelength ranges lead to the need for robust polarimeters that are efficient on a wide spectral domain and adaptable to space conditions. As part of the UVMag consortium, which was created to develop spectropolarimetric UV facilities in space, such as the Arago mission project, we present an innovative concept of static spectropolarimetry. We studied a static and polychromatic method for spectropolarimetry, which is applicable to stellar physics. Instead of temporally modulating the polarization information, as is usually done in spectropolarimeters, the modulation is performed in a spatial direction, orthogonal to the spectral one. Thanks to the proportionality between phase retardance imposed by a birefringent material and its thickness, birefringent wedges can be used to create this spatial modulation. The light is then spectrally cross dispersed, and a full Stokes determination of the polarization over the whole spectrum can be obtained with a single-shot measurement. The use of magnesium fluoride wedges, for example, could lead to a compact, static polarimeter working at wavelengths from 0.115 up to 7 µm. We present the theory and simulations of this concept as well as laboratory validation and a practical application to Arago.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...